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With the development of technology and intensification of astrophysical and geophysical 
investigations in which thermal convection plays a significant role, it has become urgent 
to study convection in the rotating layers of a nonconducting [i, 2] and an electricity- 
conducting fluid in the presence of a transverse magnetic field [3]. As a rule, no con- 
sideration is given to the presence of horizontal temperature gradients that usually arise 
in real problems and serve frequently as the basic cause of motion [4]. The simplest case 
of convection in a layer, engendered by a horizontal temperature gradient, without considera- 
tion of rotation and of the magnetic field, has been investigated in [5]. 

We examine the infinite horizontal layer of a viscous conducting fluid of thickness 
D, bounded by conducting plates at which various constant temperature gradients arbitrarily 
oriented in the plane of the layer are maintained. The layer is set into rotation at a 
constant angle of velocity f/2 relative to the z axis, directed across the layer. A con- 
stant magnetic field B 0 is applied along the z axis, as is the vector g of the acceleration 
of free fall. In the Boussinesq approximation in the equations of motion in a rotating 
system of coordinates connected to the boundaries of the layer have the form [4] 

8v/0t + (vv)v = --VP q- (Bv)B + ~Av -- f • v + g~T, 

0B/at + (vv)B = (Bv)v n u v~AB, aT/at q- (vV)r = %AT, 

divv = 0, divB =0, 

where the hydrostatic, magnetic, and centrifugal components have been taken into considera- 
tion in the pressure p; B is the magnetic field, reduced to the dimensions of velocity; 

is the coefficient of fluid temperature expansion; v m = i/o~ 0 is the coefficient of mag- 
netic viscosity. The remaining notation is standard. 

For purposes of making these quantities dimensionless, as the units of length, time, 
velocity, temperature, pressure, and of the magnetic field, we have, respectively, selected 
D, D2/~, and g~AiDS/v (A l is the temperature gradient at the lower plane), AzD, g~AID 2 (here 
we take into consideration the fact that the pressure has been normalized with respect to 
density), B0. The dimensionless system is written as follows: 

By~at + G(vv)v = --VP + Av + Ha2G-I~-I(Bv)B - -  Ta~2(? • (1)  

x v) + ?F,  

OB/Ot + G(vv)B = G(Bv)v + ~-IAB, 

or~at + G ( v v ) r  = P r - l A r ,  div v = 0, div B = 0 

[the Grashof number is G = g~AzD4/v2; the Hartmann number is Ha = BoD/VVVm; the Taylor n~n- 
ber is Ta = (fD2/v)2; the Prandtl number is Pr = v/X; the Batchelor number is ~ = V/Vm; 
u is the unit vector directed along the z axis]. 

The formulation of the problem leads to the following boundary conditions: 
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for temperature 
T = x  cos ~i+ g sin ~ w h e n ! z = 0 ,  

T ---A(x cos r + y  sin r + To w h e a Z =  t;  

for the magnetic field [3, 6] 

a~X~(dBx,~/dz)-- (~B~,v 
c~,X~(dB~,v/dz) + eB~,v 

=~ 0 whenlz = 0, 

~- 0 when iz = I, 

where the angles ~i and ~,2 are reckoned from the x axis and in the xy plane give the direc- 
tions of the temperature gradients at the lower and upper planes, respectively; A = A2/A I 
is the ratio of the upper temperature gradient to the lower temperature gradient; Gz, %1, 
a2, %2 are the electrical conductivity and thickness of the lower and upper plates; a is 
the electrical conductivity of the fluid; Q is the rate of flow through a section of the 
layer in the direction of the x axis. 

In order to find the solution the velocity and the magnetic field must be represented 
as functions dependent exclusively on the transverse coordinate z. This allows us signifi- 
cantly to simplify the system of equations (i)and to obtain steady precise solutions of 
the system for the velocity, the magnetic field, and the temperature, satisfying all boun- 
dary conditions. 

The exact solution for velocity has the form 

v~,y = V~,~ + 2u~,yz + w~,y, v~ = O. 

Here Yx,y are the integration constants, determined from the integral conditions imposed 
on velocity: 

Vx,y = Rx,y/R, R = l + 4(k~,,  - -  k~?~) + 4(k~ ~ + k ? ) ( ? #  + ~,?), 

Rx (Q - ux)(t  -~ 2(]q~ 1 - k2~2) ) '~- = + zuy(ki?2 + k2W) - -  

--  2u~(t)[(k~,~ -- k~'~) + 2(k~ + k?)(~# + ~#)l -- 2u~(t ) (k~ + t'~,~), 

/~y = (Q - ~x)2(k~?~ q- k ~ h ) - -  ~-y(l --{- 2(kf~, - -  k@t2)) -4- 

+ 2u~(i)(k~w -/- k~%,~)-- 2u~(i)[(]q?~ - -  k2%, ~) + 2(k/- + k~2)(?~ 2 + ~,.2)l, 
1 

ux,v = ~ u,:,v dz, 71,2 = 2 (el,2 - -  es,4)/(Ta + tta4) 1/-~, kl,~. = 
O 

= [ ~  Ha  ~ + (Ta + Ha4)~/'~]1/2/1/'2, 

e = 2 ch (2kl ) - -  2 cos (2k,_), eel = 2 sh ]q cos k 2, ez= = 2 ch k~ sin k.,, 

sea = exp (2kl ) - -  cos (2k2), ee.~ = sin (2k,,), z~'~ == sh (2k~), 

u,: = --[Ha=((OT/Oz) + cos %) + TaV~((OT/Og) + sin qh)]/[-l(Ta -4- t I a  ~) ], 

u~ = --[Ha~'((OT/Og) + sin qh)- -  TaV~'((OT/~x) + cos (pi)]/[4(Ta "4- tIa~)],  

OT/Ox = (A cos ~ - -  cos q~l)z + cos %,  

OT/Oy = (A sin ~ - -  sin ~ ) z  + sin (p,, 

w;,~ = exp [--k~(i  - -  z)][CL~ cos k,~(i - - z ) + _  C,,,~ sin k.,(i - -  z)] + 

+ exp [--k~z] [C:~,~ cos k,,z .4- Ca, ~ sin k~z], 
9 .t CL. ~ = V~,~(e~ - -  ca) +__ V~,~(% - -  e~)-- 2u~,~(i) % ~ -u~,~(Oe~, 

Ca,~ ---- V:c,~(ex - -  ca) • V~,~(e.~ - -  e~) "4- 2u~,~(l)e~ -4- 2u~,x(t)e~. 

The solutions for the magnetic field and temperature can easily be found by substi- 
tuting the expression for velocity into the equations given in [7]. In the present study 
we have derived expressions for the magnetic field and for temperature, but we do not pre- 
sent them here because of their cumbersome nature. In corresponding limit cases these be- 
come the familiar Birikh solutions [5] (Ha = Ta = ~ = ~2 = 0, A = i), the Eckman solution 
(G = Ha = 0), the Hartmann solution (G = Ta = 0), and with G = 0 they change to the solutions 
from [3]. 

The properties of the exact solution are dealt with on the example of mercury at T ~ 
300 K, aluminum at T ~ 900-1000 K, and sodium at T ~ 370 K. All of the graphs have been 
constructed for Q = ~01 =~2 = 0, A = i, and the thickness of the layer was assumed to be 
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equal to i cm. The Grashof numbers for each substance are calculated for a temperature 
gradient equal to 1 K/m. In the expression for velocity the two first terms form the core 
of the flow and the third corresponds to the boundary layer~ This is clearly seen in Fig. 
i, where the profiles of the x-th (odd numerals) and y-th (even numerals) components of 
velocity for mercury are shown. Profile i: Vx.102; and profile 2: Vy'105, were calcu- 
lated for Ta = 3.04, Ha = 14.5, which corresponds to a rotational angular velocity of 0.001 
rps and a magnetic-field strength of 50 A/m. The core of the flow is linearly dependent 
on the transverse coordinate z, the thickness of the boundary layers tends toward zero with 
an increase in the magnetic field, and the y-th components of velocity appear only as a 
result of rotation and depend significantly on Tao Profile 3: vxol04, and profile 4: 
Vy'103, were calculated for Ta = 3.04"106 , Ha = 0.029 (i rps, 0.i A/m) (the case of a weak 
magnetic field and of strong rotatien)~ The fluid is virtually immobile at the core, and 
we see a periodic shift in the direction of velocity with the flow intensity attenuating 
toward the center. The Eckman boundary layers can clearly be seen, and their thickness 
tends toward zero as Ta increases. A linear relationship between the profile of the flow 
core and the transverse coordinate is characteristic of the y-th component. Profile 5: 
Vx'104, and profile 6: Vy'10 ~, have been obtained for Ta = 3.04"106 , Ha = 14.5 (the case 
of a strong field and strong rotation). The influence of each of these factors is followed 
clearly on the profile of the x-th component of velocity, and we see the linear profile 
of the core and the Ekman boundary layers. 
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Figure 2 shows the profiles of the x-th and y-th components of the magnetic field: 
i) Bx'107; 2) By'f09; 3) Bx'109; 4) By'107; 5) Bx.108; 6) B "107 The numbers at the pro- y 
files correspond to the same Hartmann and Taylor numbers as the numbers at the velocity 
profiles. The most interesting case is the one involving strong rotation and a weak mag- 
netic field, and we have reference here to profile 3. The plane rate in the profile of 
the x-th magnetic-field component indicates that the flow core is virtually nonmoving. 

Figure 3 shows the temperature profiles for the same parameters as the profiles of 
velocity and of the magnetic field. 

It would be interesting to look at the change of the flow of heat through the boundary 
of the layer insofar as this relates to rotation and the transverse magnetic field. In 
order to study the exchange of heat through the boundary of the layer, let us define the 
local Nusselt number Nu at the point having coordinates x, y, z as the ratio of the dimen- 
sionless temperature gradient across the layer to the transverse gradient in the absence 
of rotation and in the absence of a magnetic field: Nu = (8T/Bz)/(BT/Sz)IHa,Ta= 0 (Nu de- 
pends on Q, G, Pr, Ha, Ta). 

Figure 4 shows Nu at the boundary in the case of x = y = z = 0 as a function of G for 
various Ta, for a variety of substances. Curve 1 corresponds to the Nu functions for alum- 
inum and sodium when Ta = 2.7 and Ta = 5.2 (0.01 rps); curve 2 shows this relationship for 
mercury~ i~t'he case of Ta = 304 (0.01 rps); curve 3 shows this relationship for aluminum 
in the.i~aSe of Ta = 2.7"104 (i rps); curve 4 is the same for sodium at Ta = 5.2"104 (I rps); 
curve 5 represents Nu.10 for mercury when Ta = 3.04.105 (i rps). We can see that the in- 
tensity of the heat flux in the case of weak rotation diminishes sharply with an increase 
in the magnetic field. In the case of strong rotation we observe a displacement of the 
heat-flux maximum in the direction of strong magnetic fields. With an increase in the mag- 
netic~i~field the flow of heat tends toward a limit that is independent of Ta. 

Figure~i5 shows the relationship for the transverse temperature gradient through a sec- 
tion of the layer for liquid sodium. In the case of equal temperature gradients at the 
boundaries, the integral heat flow across the layer is equal to zero for any G and Ta. All 
o~the curves are symmetrical relative to the middle of the layer. The numerals at the 
c~ves correspond to the following parameters: i) (ST/Bz)'103, Ta = Ha = 0; 2) (ST/Sz)'103, 
Ta = 5.2, Ha = 5; 3) (BT/Bz)'I04, Ta = 5.2, Ha = 50; 4) (BT/Bz)~ Ta = 5.2"i04, Ha = 
i; 5) (8T/Bz)'104, Ta = 5.2"104 , Ha = i0; 6) (~T/Bz)'104, Ta = 5.2"10 ~, Ha = 50. 

The graphs show that large changes in Nu are characteristic of small changes in G, 
especially in the case of small Ta. It thus becomes possible to control the flow of heat 
at the boundary of the layer. This feature of this problem is governed by the rapid re- 
structuring of the boundary layers of the flow with slight changes in G and Ta. 
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